\(\newcommand{\abs}[1]{\left\lvert#1\right\rvert}\) \(\newcommand{\norm}[1]{\left\lVert#1\right\rVert}\) \(\newcommand{\inner}[1]{\left\langle#1\right\rangle}\) \(\DeclareMathOperator*{\argmin}{arg\,min}\) \(\DeclareMathOperator*{\argmax}{arg\,max}\) \(\DeclareMathOperator*{\E}{\mathbb{E}}\)
×
This section is under development!
Factor models used for Asset Pricing, Business Cycle Analysis, Monitoring/Forecasting, Consumer Theory, etc.
\[\boxed{X_{it} = \lambda_i'F_t + e_{it}} \quad i\le N, \; t\le T.\]Classical FA
- \(T \to \infty\), \(N\) fixed
- \(e_{it}\) are iid over \(t\) and ind. over \(i\), i.e. \(\Omega := \E(e_te_t')\) is a diagonal matrix
- \(F_t\) are iid and ind. of \(e_{it}\)
- \(\widehat{\Sigma}\) is assumed to be \(\sqrt{T}\)-consistent for \(\Sigma\)
- \(\lambda_i\) can be consistently estimated, but not \(F_t\) (Anderson 1984)
Approximate FA (Chamberlain & Rothschild 1983)
- nondiagonal \(\Omega := \E(e_te_t')\) allowed
- \(\Omega := \E(e_te_t')\) has bounded eigenvalues
- Hence largest eigenvalue bounded by \(\boxed{\underset{i}{\max} \sum_{j=1}^N\abs{\Omega_{ij}}}\)
- PCA ~ FA, when \(N\to\infty\) (assuming \(\Sigma\) known)
- Connor & Korajczyk: unknown \(\Sigma\) and \(N\gg T\)
Strict FA (APT of Ross 1976)
- \(e_{it}\) is uncorrelated across \(i\)
HD FA (Bai 2003)
- \(N,T \to \infty\) (also \(N\to \infty, T\) fixed)
- serial and cross-section dependence for the idiosyncratic errors
- heteroskedasticity in both dimensions
POET (Fan 2013)
\(\boxed{y_{it} = b_i'f_t + u_{it}} \quad i\le p, \; t\le T.\)
\(\Sigma = B cov(f_t)B' + \Sigma_u\)